Inverse Laplace Transform Calculator

Enter a Laplace-domain function F(s) as a sum of simple rational terms. Supported forms (combined by +/-):
A/(s-a)^n, A/s^n, (k1*(s-a)+k0)/((s-a)^2+w^2), (k1*s+k0)/(s^2+w^2), and general quadratics (k1*s+k0)/(a2*s^2+a1*s+a0).

Use s for Laplace variable (or change below), ^ for powers, and parentheses. Examples: 1/(s-2), s/(s^2+9), (s+2)/(s^2+4s+5).
One letter (default s).
One letter for time domain (default t).
Click an example to auto-fill and see the result immediately.
Shows the exact identity: f(t) = 𝓛⁻¹{F(s)} (formatted by math.js, not LaTeX).

Results

Time-domain Function f(t)

If multiple terms were entered, results are summed in the time domain.

What is an Inverse Laplace Transform Calculator?

An Inverse Laplace Transform Calculator converts a function of the complex variable \(s\), typically denoted \(F(s)\), back into a causal time-domain function \(f(t)\). If \(\mathcal{L}\{f(t)\}=F(s)=\displaystyle\int_{0}^{\infty} e^{-st} f(t)\,dt\), then the inverse operation returns \(f(t)=\mathcal{L}^{-1}\{F(s)\}\). This is essential for solving linear differential equations, analyzing control systems, circuits, and signals. In practice, we use linearity, partial-fraction decomposition, shift theorems, and the convolution theorem to reconstruct \(f(t)\) efficiently.

$$\textbf{Linearity:}\quad \mathcal{L}^{-1}\{aF(s)+bG(s)\}=a\,f(t)+b\,g(t).$$ $$\textbf{Frequency shift:}\quad \mathcal{L}^{-1}\{F(s-a)\}=e^{at}f(t).$$ $$\textbf{Time delay:}\quad \mathcal{L}^{-1}\{e^{-as}F(s)\}=u(t-a)\,f(t-a).$$ $$\textbf{Convolution:}\quad \mathcal{L}^{-1}\{F(s)G(s)\}=(f*g)(t)=\int_{0}^{t} f(\tau)g(t-\tau)\,d\tau.$$

About the Inverse Laplace Transform Calculator

This calculator accepts symbolic \(F(s)\) (and parameters) and returns \(f(t)\) with step-by-step reasoning. It leverages table lookups for common pairs, applies partial fractions when rational functions appear, and uses theorems for shifts and products. Repeated poles are handled via known patterns:

$$\mathcal{L}^{-1}\Big\{\frac{1}{(s-a)^n}\Big\}=\frac{t^{n-1}}{(n-1)!}\,e^{at}u(t),\qquad n\in\mathbb{N}.$$

For responsiveness and crisp math on all screens, render formulas with MathJax; for numeric evaluations (parameters, plotting samples) use math.js. Configure MathJax with container-width line breaks so equations wrap neatly on mobile while preserving the same formulas shown below.

How to Use this Inverse Laplace Transform Calculator

  1. Enter \(F(s)\) and specify constants (e.g., poles, delays, shifts).
  2. Choose method: table/partial fractions, convolution, or shift rules; the tool combines methods automatically when needed.
  3. Review intermediate steps and the final \(f(t)=\mathcal{L}^{-1}\{F(s)\}\), including any unit-step \(u(t)\) factors for delays.
  4. Optionally verify by forward transform or by substituting into your differential equation.

Examples (using the same formulas)

Example 1 — Partial fractions:
\(F(s)=\dfrac{s+3}{(s+1)(s+2)}=\dfrac{1}{s+1}-\dfrac{1}{s+2}\ \Rightarrow\ f(t)=e^{-t}-e^{-2t}.\)

Example 2 — Repeated pole:
\(F(s)=\dfrac{2}{(s-3)^2}\ \Rightarrow\ f(t)=2\,t\,e^{3t}u(t)\) by \(\mathcal{L}^{-1}\{1/(s-a)^2\}=t\,e^{at}u(t)\).

Example 3 — Time delay:
\(F(s)=\dfrac{e^{-4s}}{s+2}\ \Rightarrow\ f(t)=u(t-4)\,e^{-2(t-4)}\) using \(\mathcal{L}^{-1}\{e^{-as}F(s)\}=u(t-a)f(t-a)\) and \(\mathcal{L}^{-1}\{1/(s+2)\}=e^{-2t}.\)

Example 4 — Product / convolution:
\(F(s)=\dfrac{1}{s}\cdot\dfrac{1}{s+2}\ \Rightarrow\ f(t)=(1 * e^{-2t})(t)=\displaystyle\int_0^t e^{-2(t-\tau)}\,d\tau=\frac{1-e^{-2t}}{2}.\)

FAQs

Q1: What’s the difference between Laplace and inverse Laplace?
Laplace maps \(f(t)\) to \(F(s)\); inverse Laplace reconstructs \(f(t)\) from \(F(s)\).

Q2: How do I handle non-rational \(F(s)\)?
Use tables, series expansions, or residues; many common forms (e.g., exponentials, s-shifts) have closed-form inverses.

Q3: What if there’s a time delay?
A factor \(e^{-as}\) implies \(u(t-a)f(t-a)\) in time; include the step function explicitly.

Q4: Can this solve ODEs?
Yes. Transform the ODE, solve algebraically for \(Y(s)\), then apply the inverse to get \(y(t)\).

Q5: Are repeated poles difficult?
No. Use \(\mathcal{L}^{-1}\{1/(s-a)^n\}=t^{n-1}e^{at}/(n-1)!\) and combine with linearity and shifts.

More Math & Algebra Calculators